PP1 (Shorter) Quant Section 2 (Easy) Q14

<p><span style="color:#27ae60;"><span style="font-size:20px;">Solving the Problem</span></span></p> <p><strong>Method 1 (Conceptual)</strong></p> <p>$j -k$ means the distance between $j$ and $k$ on the number line. If two integers have an even distance between them, we know that they are either both odd or both even.</p> <p>Since the question has the word <strong>must</strong>, the answer choice must be guaranteed to be even, regardless of whether $j$ and $k$ are both even or both odd.</p> <p>If $j$ and $k$ were both odd:</p> <ul> <li><span style="color:#e74c3c;">A:</span>&nbsp;$k&nbsp;= odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li> <li><span style="color:#e74c3c;">B:</span> $jk&nbsp;= odd*odd = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li> <li><span style="color:#e74c3c;">C:</span> $j + 2k&nbsp;= odd + even*odd = odd + even = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li> <li><span style="color:#27ae60;">D:</span>&nbsp;&nbsp;$jk + j&nbsp;= odd*odd + odd = odd + odd = even$, so we can <span style="color:#27ae60;">keep this</span>.</li> <li><span style="color:#e74c3c;">E:</span> $jk - 2j&nbsp;= odd*odd - even*odd = odd - even = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li> </ul> <p>If $j$ and $k$ were both odd (which they can be), only $jk+j$ can be guaranteed to be even.</p> <p><strong>Method 2 (Choosing Numbers)</strong></p> <p>We can experiment with odd and even values for j and k:</p> <table border="1" cellpadding="1" cellspacing="1" style="width:500px;"> <thead> <tr> <th scope="col">j</th> <th scope="col">k</th> <th scope="col">A: k</th> <th scope="col">B: jk</th> <th scope="col">C: j+2k</th> <th scope="col">D: jk+j</th> <th scope="col">E: jk-2j</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>2</td> <td><span style="color:#27ae60;">2</span></td> <td><span style="color:#27ae60;">0</span></td> <td><span style="color:#27ae60;">4</span></td> <td><span style="color:#27ae60;">0</span></td> <td><span style="color:#27ae60;">0</span></td> </tr> <tr> <td>1</td> <td>3</td> <td><span style="color:#e74c3c;">3</span></td> <td><span style="color:#e74c3c;">3</span></td> <td><span style="color:#e74c3c;">7</span></td> <td><span style="color:#27ae60;">4</span></td> <td><span style="color:#e74c3c;">1</span></td> </tr> </tbody> </table> <p>We can see that only $jk+j$ gives us an even value in all instances.</p> <p>So, the answer must be <span style="color:#27ae60;">D</span>.</p>