<p><span style="color:#27ae60;"><span style="font-size:20px;">Solving the Problem</span></span></p>
<p><strong>Method 1 (Conceptual)</strong></p>
<p>$j -k$ means the distance between $j$ and $k$ on the number line. If two integers have an even distance between them, we know that they are either both odd or both even.</p>
<p>Since the question has the word <strong>must</strong>, the answer choice must be guaranteed to be even, regardless of whether $j$ and $k$ are both even or both odd.</p>
<p>If $j$ and $k$ were both odd:</p>
<ul>
<li><span style="color:#e74c3c;">A:</span> $k = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li>
<li><span style="color:#e74c3c;">B:</span> $jk = odd*odd = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li>
<li><span style="color:#e74c3c;">C:</span> $j + 2k = odd + even*odd = odd + even = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li>
<li><span style="color:#27ae60;">D:</span> $jk + j = odd*odd + odd = odd + odd = even$, so we can <span style="color:#27ae60;">keep this</span>.</li>
<li><span style="color:#e74c3c;">E:</span> $jk - 2j = odd*odd - even*odd = odd - even = odd$, so we can <span style="color:#e74c3c;">eliminate this</span>.</li>
</ul>
<p>If $j$ and $k$ were both odd (which they can be), only $jk+j$ can be guaranteed to be even.</p>
<p><strong>Method 2 (Choosing Numbers)</strong></p>
<p>We can experiment with odd and even values for j and k:</p>
<table border="1" cellpadding="1" cellspacing="1" style="width:500px;">
<thead>
<tr>
<th scope="col">j</th>
<th scope="col">k</th>
<th scope="col">A: k</th>
<th scope="col">B: jk</th>
<th scope="col">C: j+2k</th>
<th scope="col">D: jk+j</th>
<th scope="col">E: jk-2j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td><span style="color:#27ae60;">2</span></td>
<td><span style="color:#27ae60;">0</span></td>
<td><span style="color:#27ae60;">4</span></td>
<td><span style="color:#27ae60;">0</span></td>
<td><span style="color:#27ae60;">0</span></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td><span style="color:#e74c3c;">3</span></td>
<td><span style="color:#e74c3c;">3</span></td>
<td><span style="color:#e74c3c;">7</span></td>
<td><span style="color:#27ae60;">4</span></td>
<td><span style="color:#e74c3c;">1</span></td>
</tr>
</tbody>
</table>
<p>We can see that only $jk+j$ gives us an even value in all instances.</p>
<p>So, the answer must be <span style="color:#27ae60;">D</span>.</p>