PP1 (Shorter) Quant Section 2 (Hard) Q5

<p><span style="color:#8e44ad;"><span style="font-size:20px;">Deductions from the Given Information</span></span></p> <p>Since we are given information about two triangles, let&#39;s set up a table to summarise what we can deduce.</p> <ul> <li>$L$ is the length of rectangle $A$</li> <li>$W$ is the width of rectangle $A$</li> </ul> <table border="1" cellpadding="1" cellspacing="1" style="width:500px;"> <thead> <tr> <th scope="row">Rectangle</th> <th scope="col">Length</th> <th scope="col">Width</th> <th scope="col">Perimeter</th> <th scope="col">Area</th> </tr> </thead> <tbody> <tr> <th scope="row">A</th> <td>$L$</td> <td>$W$</td> <td>$2(L+W) = 2L+2W$</td> <td>$LW$</td> </tr> <tr> <th scope="row">B</th> <td>$1.1L$</td> <td>$0.9W$</td> <td>$2(1.1L + 0.9W) = 2.2L + 1.8W$</td> <td>$1.1L * 0.9W = 0.99LW$</td> </tr> </tbody> </table> <p><span style="color:#27ae60;"><span style="font-size:20px;">Solving the Problem</span></span></p> <p>We are being asked to compare the areas of the two rectangles: $LW$ vs $0.99LW$.</p> <p>We can divide by $LW$ on both sides, so we are left with $1$ vs $0.99$.</p> <p>Clearly, $1$ is bigger than $0.99$, so QA is bigger here.</p> <p>So, our answer would be <span style="color:#27ae60;">A</span>.</p>