<p><span style="color:#8e44ad;"><span style="font-size:20px;">Deductions from the Given Information</span></span></p>
<p>Since we are given information about two triangles, let's set up a table to summarise what we can deduce.</p>
<ul>
<li>$L$ is the length of rectangle $A$</li>
<li>$W$ is the width of rectangle $A$</li>
</ul>
<table border="1" cellpadding="1" cellspacing="1" style="width:500px;">
<thead>
<tr>
<th scope="row">Rectangle</th>
<th scope="col">Length</th>
<th scope="col">Width</th>
<th scope="col">Perimeter</th>
<th scope="col">Area</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">A</th>
<td>$L$</td>
<td>$W$</td>
<td>$2(L+W) = 2L+2W$</td>
<td>$LW$</td>
</tr>
<tr>
<th scope="row">B</th>
<td>$1.1L$</td>
<td>$0.9W$</td>
<td>$2(1.1L + 0.9W) = 2.2L + 1.8W$</td>
<td>$1.1L * 0.9W = 0.99LW$</td>
</tr>
</tbody>
</table>
<p><span style="color:#27ae60;"><span style="font-size:20px;">Solving the Problem</span></span></p>
<p>We are being asked to compare the areas of the two rectangles: $LW$ vs $0.99LW$.</p>
<p>We can divide by $LW$ on both sides, so we are left with $1$ vs $0.99$.</p>
<p>Clearly, $1$ is bigger than $0.99$, so QA is bigger here.</p>
<p>So, our answer would be <span style="color:#27ae60;">A</span>.</p>