<p><span style="color:#27ae60;">Solving the Problem</span></p>
<p><strong>Method 1 (Algebra)</strong></p>
<p>We know that if a point is on both curves/lines, it must be where the lines/curves intersect. So, the y values would be the same, so we can equate them to figure out the x coordinate of the intersections:</p>
<p>$y = x + 2 = x^2$</p>
<p>$x^2-(x+2) = 0$</p>
<p>$x^2-x-2=0$</p>
<p>Now, we can solve this using any of the standard methods, but this particular equation is pretty straightforward to factorize:</p>
<p>$x^2-x-2 = (x+1)(x-2)$</p>
<p>So, either $x+1=0$ OR $x-2=0$, so the valid x coordinates would be $-1$ or $2$.</p>
<p>Now, we can just substitute the x values back into the equations to get the y values:</p>
<p>$y = x+2 = x^2 = -1+2 = (-1)^2 = 1$</p>
<p>$y = x+2 = x^2 = 2+2 = (2)^2 = 4$</p>
<p>So, the points that appear on both lines would be <span style="color:#27ae60;">(-1, 1)</span> and <span style="color:#27ae60;">(2, 4)</span>.</p>
<p><strong>Method 2 (BackSolving)</strong></p>
<p>We can also check through each answer choice to see if the coordinates are valid for both equations. We can plug in the x coordinate into both equations and which ones give the correct y values for both:</p>
<table border="1" cellpadding="1" cellspacing="1" style="width:700px;">
<thead>
<tr>
<th scope="col">Point</th>
<th scope="col">x value</th>
<th scope="col">Expected y value</th>
<th scope="col">Result of equation 1: x+2</th>
<th scope="col">Result of equation 2: x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td><span style="color:#e74c3c;">(-2, 0)</span></td>
<td>-2</td>
<td>0</td>
<td>-2 + 2 = <span style="color:#27ae60;">0</span></td>
<td>(-2)^2 = <span style="color:#e74c3c;">4</span></td>
</tr>
<tr>
<td><span style="color:#27ae60;">(-1, 1)</span></td>
<td>-1</td>
<td>1</td>
<td>-1 + 2 = <span style="color:#27ae60;">1</span></td>
<td>(-1)^2 = <span style="color:#27ae60;">1</span></td>
</tr>
<tr>
<td><span style="color:#e74c3c;">(0, 2)</span></td>
<td>0</td>
<td>2</td>
<td>0 + 2 = <span style="color:#27ae60;">2</span></td>
<td>(0)^2 = <span style="color:#e74c3c;">0</span></td>
</tr>
<tr>
<td><span style="color:#e74c3c;">(1, 1)</span></td>
<td>1</td>
<td>1</td>
<td>1 + 2 = <span style="color:#e74c3c;">3</span></td>
<td>(1)^2 = <span style="color:#27ae60;">1</span></td>
</tr>
<tr>
<td><span style="color:#27ae60;">(2, 4)</span></td>
<td>2</td>
<td>4</td>
<td>2 + 2 = <span style="color:#27ae60;">4</span></td>
<td>(2)^2 = <span style="color:#27ae60;">4</span></td>
</tr>
</tbody>
</table>
<p>We can see that both equations give the expected y value only for the points <span style="color:#27ae60;">(-1, 1)</span> and <span style="color:#27ae60;">(2, 4)</span></p>
<p>So, the correct answers are <span style="color:#27ae60;">B</span> and <span style="color:#27ae60;">E</span>.</p>