PP1 (Shorter) Quant Section 2 (Medium) Q6

<p><span style="color:#27ae60;"><span style="font-size:20px;">Solving The Problem</span></span></p> <p>This seems like a <strong><span style="color:#8e44ad;">Words to Algebra</span></strong> problem. So, we can start reading <strong><span style="color:#8e44ad;">Piece by Piece</span></strong> and convert it into equations and expressions.</p> <blockquote> <p>A rectangular garden&nbsp;</p> </blockquote> <p>We know the garden will have a length and a width, so let&#39;s set up some variables:</p> <ul> <li>$L$ = The length of the garden</li> <li>$W$ = The width of the garden</li> </ul> <blockquote> <p>has a perimeter of 92 meters.</p> </blockquote> <p>The perimeter is twice the sum of the length and the width, so:</p> <p>$2(L+W)=92$</p> <blockquote> <p>If the length of the garden is 1 meter greater than twice its width,</p> </blockquote> <ul> <li>$L=2W+1$</li> <li>$W=\frac{L-1}{2}$</li> </ul> <blockquote> <p>what is the length of the garden, in meters?</p> </blockquote> <p>So, we have to solve for the length $L$. We can substitute our new equation for $W$ (in terms of $L$) into the first to figure out $L$:</p> <ul> <li>$2(L+\frac{L-1}{2}) = 92$</li> <li>$2L+2\frac{L-1}{2} = 92$</li> <li>$2L+L-1= 92$</li> <li>$3L-1=92$</li> <li>$3L=93$</li> <li>$L=\frac{93}{3}$</li> <li>$L=31$</li> </ul> <p>So, the answer is <font color="#27ae60">D</font>.</p>