<p><span style="color:#27ae60;"><span style="font-size:20px;">Solving the Problem</span></span></p>
<p><strong>Method 1 (Algebra)</strong></p>
<p>We can start out by assigning some variables:</p>
<ul>
<li>$A$ = The price an an apple</li>
<li>$O$ = The price of an orange</li>
</ul>
<blockquote>
<p>the price of an apple is twice the price of an orange.</p>
</blockquote>
<p>From this, we can also set up the following equation:</p>
<p>$A=2O$</p>
<blockquote>
<p>For which of the following combinations of apples and oranges is the total price equal to the total price of 20 oranges?</p>
</blockquote>
<p>So, we're looking for anything that is equivalent to $20O$ or $10A$. We can now go through each answer choice, write them out in terms of only Oranges, and check which equals $\textbf{20O}$. </p>
<ul>
<li><span style="color:#27ae60;">A:</span> 2 apples and 16 oranges -> $2A+16O = 4O+16O = 20O$</li>
<li><span style="color:#27ae60;">B:</span> 3 apples and 14 oranges -> $3A+14O = 6O+14O = 20O$</li>
<li><span style="color:#e74c3c;">C:</span> 4 apples and IO oranges -> $4A+10O = 8O+10O = 18O$</li>
<li><span style="color:#27ae60;">D:</span> 6 apples and 8 oranges -> $6A+80 = 12O+8O = 20O$</li>
<li><span style="color:#e74c3c;">E:</span> IO apples and 5 oranges -> $10A+5O = 20O+5O = 25O$</li>
<li><span style="color:#e74c3c;">F:</span> 12 apples and 4 oranges -> $12A+4O = 24O+4O = 28O$</li>
</ul>
<p>From, this we can see that only <span style="color:#27ae60;">A</span>, <span style="color:#27ae60;">B</span>, and <span style="color:#27ae60;">D</span> work.</p>
<p><strong>Method 2 (Choosing Numbers)</strong></p>
<p>Let's choose the following prices:</p>
<ul>
<li>Price of an Apple = $\$2$</li>
<li>Price of an Orange = $\$1$</li>
</ul>
<p>Now, we can look for anything that equals the price of 20 Oranges, which would be <strong>$20</strong>:</p>
<ul>
<li><span style="color:#27ae60;">A:</span> 2 apples and 16 oranges -> $2(2) + 16(1)$ = <span style="color:#27ae60;">$20</span></li>
<li><span style="color:#27ae60;">B:</span> 3 apples and 14 oranges -> $3(2) + 14(1)$ = <span style="color:#27ae60;">$20</span></li>
<li><span style="color:#e74c3c;">C:</span> 4 apples and IO oranges -> $4(2) + 10(1)$ = <span style="color:#e74c3c;">$18</span></li>
<li><span style="color:#27ae60;">D:</span> 6 apples and 8 oranges -> $6(2) + 8(1)$ = <span style="color:#27ae60;">$20</span></li>
<li><span style="color:#e74c3c;">E:</span> IO apples and 5 oranges -> $10(2) + 5(1)$ = <span style="color:#e74c3c;">$25</span></li>
<li><span style="color:#e74c3c;">F:</span> 12 apples and 4 oranges -> $12(2) + 4(1)$ = <span style="color:#e74c3c;">$28</span></li>
</ul>
<p>From, this we can see that only <span style="color:#27ae60;">A</span>, <span style="color:#27ae60;">B</span>, and <span style="color:#27ae60;">D</span> work.</p>
<p>So, <span style="color:#27ae60;">A</span>, <span style="color:#27ae60;">B</span>, and <span style="color:#27ae60;">D</span> are all valid answers.</p>