PP1 (Shorter) Quant Section 2 (Hard) Q15

<p><span style="color:#27ae60;"><span style="font-size:20px;">Solving the Problem</span></span></p> <p>This seems like a very wordy question, so it&#39;s best if we tackle it <strong><span style="color:#8e44ad;">Piece by Piece</span></strong>. We can start by reading and making deductions:</p> <blockquote> <p>A tailor used 30 buttons that had an average (arithmetic mean) weight of x grams per button</p> </blockquote> <p>We can start by determining the sum of these 30 buttons:</p> <ul> <li>$sum = mean * \#\,values$</li> <li>$sum\,of\,30\,buttons = x * 30$</li> <li>The sum of these buttons will be $30x$</li> </ul> <blockquote> <p>and 20 other buttons that had an average weight of 80 grams per button.</p> </blockquote> <p>Now, let&#39;s find the sum of the remaining 20 buttons:</p> <ul> <li>$sum = mean * \#\,values$</li> <li>$sum\,of\,20\,buttons = 80&nbsp;* 20$</li> <li>The sum of these buttons will be $1600$</li> </ul> <blockquote> <p>Which of the following is the average weight per button, in grams, of the 50 buttons that the tailor used?</p> </blockquote> <p>Finally, we can work out the sum and then the mean of all 50 buttons:</p> <ul> <li>$mean\,of\,50\,buttons = \frac{sum\,of\,50\,buttons}{50}$</li> <li>$sum\,of\,50\,buttons = 30x + 1600$</li> <li>$mean\,of\,50\,buttons = \frac{30x + 1600}{50}$</li> <li>$mean\,of\,50\,buttons = \frac{3}{5}x + 32$</li> </ul> <p>So, the answer will be <span style="color:#27ae60;">D</span>.</p>